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Abstract— Plane fitting plays an important role in image
processing and computer vision. It is challenging because of
the outliers that do not follow the plane pattern. In this work,
we address the problem of support-plane fitting for room floor
detection from point clouds that are generated from depth
image. Based on the geometric layout of data, an optimization
problem is derived to estimate the support-plane. Algorithms
are also proposed to deal with data noise. The floor detection
is achieved by support-plane fitting, and is employed as a
reference to analyze the spatial organization of room scene. A
projection method is presented to form the organization map.
Experiments demonstrate the proposed method is more robust,
and it achieves remarkable performance in understanding the
spatial organization.

I. INTRODUCTION

Plane fitting (or plane estimation) is a fundamental prob-

lem in image processing and computer vision areas. The task

is to construct a plane that has the best fit to a set of 3D

points. It is essential in many applications. For example, the

floor plane detection plays an important role in understanding

the spatial organization of objects in the environment [1].

However, fitting a plane is challenging due to the large

number of outliers [2] which do not follow the pattern of

the other observations.

Recently, indoor mapping can be achieved in a more

convenient way, and the 3D point cloud can be obtained

by an RGBD sensor (e.g. Microsoft Kinect). The indoor

environment usually comprises a lot of planar surfaces (e.g.

floor, wall and table surface) which can be used as reference

for object segmentation and spatial relation modeling. In

this work, we address the problem of plane fitting for floor

estimation from RGBD images, and use the floor as a

reference to analyze the spatial relations of objects for indoor

scene.

Plane fitting has been developed for decades. Various

methods were proposed to handle the problem. The classical

approach of total least squares (TLS) [3] is a technique

to solve a system of equation AX ≈ B for X , where

A ∈ R
m×n and B ∈ R

m×d are the given data. However,

TLS can’t deal with data that contain many outliers. The

method of iteratively re-weighted least squares (IRLS) [4]

is an iterative approach in which each step involves solving

a weighted least squares problem, and is capable of dealing

with outliers in robust regression. The RANSAC algorithm
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Fig. 1. Floor detection for object segmentation and spatial relation analysis.
(a) shows an RGB image of an indoor scene. In (b) the support-plane is
estimated to detect the floor and segment objects in the corresponding depth
(range) image, and the green region indicates the floor, while the white area
is due to the missing data from sensor. The objects are projected onto the
floor plane to form an organization map, as shown in (c).

[5] can iteratively fit a model for data containing a lot of

outliers. Schnabel et al. [6] employed RANSAC for plane

extraction efficiently and precisely, but the parameters, such

as outlier ratios and neighbor point relations, have to be set

properly. Poppinga et al. [7] proposed an approach to detect

planes by combining region growing and plane fitting for

noise 3D range images. Borrmann et al. [8] used 3D Hough

Transform to detect planes in 3D point cloud, and they

also presented a novel approach to design the accumulator.

The method of Hough Transform only works well if there

are enough points lying exactly in a certain plane, and the

computational cost is high.

Although most of the previous methods can estimate plane

on data with noise robustly, they tend to fail when the

outlier points are dominant in the whole given data set. For

example, the floor plane to be detected only occupy a small

proportion of the whole image, and most of the obtained data

from sensor are outliers for the estimation of floor plane. In

this case, most of the previous approaches are ineffective.

Another problem is the huge amount of data. A depth image

with resolution of 640 × 480 contains over 300,000 points,

which are not acceptable for most of the methods.

Most of the acquired data points lie above the floor

in room scene, except for some data noise below. In this

work a method of support-plane fitting is presented, and the

technique of random sampling is applied to reduce the input

data without decreasing performance of plane estimation.

Support-plane means that all the objects are on one side of

the plane and little noise data on the other side. For example,

given a 3D point cloud of indoor scene, the table, the person

and other objects are above the floor, and no data below

the floor can be obtained by the sensor. The plane where

the floor lies is a support-plane. Fig. 1(a) shows an RGB

image of a room from Cornell Activity Dataset [9]. Based

on the corresponding depth image, a support-plane can be
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(a) (b)

Fig. 2. Coordinate systems of depth map and 3D points cloud.

constructed, and the floor is detected in the meantime. In

Fig. 1(b), the green region is made up of points that fall into

the floor plane. The objects in the room are then projected

to the floor plane along the normal direction, as shown in

Fig. 1(c), which makes the spatial layout clear.

In order to analyze the indoor scene, one can adjust the

RGBD camera to ensure that part of the floor region is

visible, and then the floor plane is detected by support-plane

estimation. The floor is used as a reference for segmenting

objects and modeling the spatial relations of those objects

in the room. We assume that the acquired data from one

object have similar spatial distributions. The method of

region growing is applied for object segmentation. Then the

data points from segmented objects are projected onto the

floor plane to form a map representing the objects’ spatial

organization.

The details of support-plane estimation are given in Sec-

tion II. The projection from 3D objects to 2D map is

illustrated in Section III. Section IV shows the experimental

results.

II. SUPPORT-PLANE FITTING

In this section, we develop a method for support-plane

estimation by solving a linear optimization problem. The

depth maps obtained from an RGBD device can be converted

to a 3D point cloud. Generally, the point cloud is noisy

because of the inaccuracy of the capture device. This section

deals with two types of capture errors. One type has a few

unstable noise points, while the other type has many stable

noises, as shown in Fig. 3.

A. From Depth Map to Point Cloud

A depth map is a single channel image with the same

resolution as the corresponding RGB image. Each pixel value

of the depth map denotes a distance between the object and

the RGBD sensor. Suppose the value at pixel (u, v) is d,

the center of the map is (u0, v0), then the 3D coordinate

(X,Y, Z) of the object on this pixel can be calculated by

the equations:

X = −(u− u0) ∗ d/c, (1)

Y = −(v − v0) ∗ d/c, (2)

Z = d, (3)

where c is the sensor constant that can be acquired by

calibration. The coordinate systems of the depth map and

3D point cloud are shown in Fig. 2.

(a) (b)

Fig. 3. Two types of data noise in support-plane fitting. The red circles
indicate the points lying in the support-plane, the green triangles (points
above the plane) are the first type of outliers, and the blue diamonds are
the second type of outliers, which is the data noise. (a) shows one type of
data noise with a few unstable noise points, while (b) shows another type
with many stable noises.

B. Outliers

Many previous work have explored robust plane fitting

with outliers. However, there is no clear definition of outliers.

This work defines two different kinds of outliers for support-

plane estimation. The first type denotes the data that lie above

the support-plane, and most of the input data belong to this

type. For example, in a room the support-plane is the floor

plane, but the majority of the acquired point clouds come

from other objects (e.g. wall, furniture). The second type

is the noise data due to the inaccuracy or instability of the

sensor. There are many types of distribution of noise data,

and we deal with two of them in this paper, as shown in Fig.

3. In the first case the number of noisy points is small but

the errors are large; while in the second case the number of

noisy points is large but the errors are small.

C. Algorithm

We first propose the algorithm to deal with the outliers

above the support plane, and then present algorithms to deal

with the noise.

A plane has the form:

Ax+By + Cz +D = 0, (4)

where A, B, C and D are plane parameters that need to be

estimated. The coordinate system of the point cloud is shown

in Fig. 2(b). Generally, the support-plane is unlikely to be

vertical, so B is nonzero. Equation (4) can be rewritten as:

y = A′ · x+ C ′ · z +D′. (5)

Suppose the point cloud contains m samples

(xi, yi, zi)
m
i=1. Because the noise is not considered so

far, all those points are in or above the support-plane, which

means:

yi ≥ A′ · xi + C ′ · zi +D′, i = 1, ...,m. (6)

Because of the geometrical relations and constraints, the

sum of the vertical distances between all the points and the

best fit support-plane must be minimum:

minimize

m∑
i=1

(yi −A′ · xi − C ′ · zi −D′). (7)
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(a) (b)

Fig. 4. Support-plane estimation by data with the first type noise. (a) shows
that different false support-planes can be fitted due to the noise. (b) shows
the stable support-plane estimated by our method.

In order to solve this problem, an objective function f(t)
and constraints gi(t) are defined as:

f(t) =

m∑
i=1

yi −
m∑
i=1

−xi · t1 −
m∑
i=1

zi · t2 −m · t3, (8)

gi(t) = yi − xi · t1 − zi · t2 − t3, i = 1, ...,m, (9)

where t = (t1, t2, t3) is the optimization variables. The

convex minimization problem is written as:

minimize
t

f(t)

subject to gi(t) ≥ 0, i = 1, ...,m.
(10)

The solution t∗ = (t∗1, t
∗
2, t

∗
3) determines the support-plane:

y = t∗1 · x+ t∗2 · z + t∗3. (11)

Then we handle the data with noise of the first type

shown in Fig. 3(a). Due to the discrete noise, the estimated

support-plane by (10) is unstable. If different data noises are

observed, different support-planes will be fitted, as shown in

Fig. 4(a). Inspired by this, a procedure of repeating fitting

is proposed. After a support-plane is estimated, omit part

of points that fall into the plane with a ratio λ and fit

the support-plane again. The procedure is kept on until the

difference between the two successive planes are negligible,

and a stable support-plane is estimated, as shown in Fig.

4(b).

The angle θ between the normals of the two successive

planes is used to denote the difference. The normals are

written as n1 and n2. The angle between them is:

θ = arccos
n1 · n2

|n1| · |n2| , (12)

where |n1| and |n2| indicate the vector norm.

In general, the number of points that fall into a support-

plane are larger than the number of noise points. A ratio r
between the plane points and all data points is defined as:

r = mp/m, (13)

where mp denotes the number of points that fall into the

estimated plane, and m is the number of all data points. The

value r of ground-truth support-plane is larger than that of

false support-plane estimated by noise data, since the number

of the first type of noise is small.

Algorithm 1 Support-plane stabilization

1: procedure INIT

2: m ← number of data points
3: th1 ← threshold of angle between plane normals
4: th2 ← threshold of plane point ratio
5: λ ← ratio of omitted plane points
6: θ0 ← inf
7: r0 ← 0
8: j ← 1

9: procedure LOOP

10: repeat
11: Support-plane fitted by (10)

12: θj ← update by (12)
13: mp ← from Support-plane
14: rj ← update by (13)
15: m ← m− λ ·mp

16: j ← j + 1
17: until (θj − θj−1 < th1 && rj > th2)

(a) (b)

Fig. 5. Support-plane estimation by data with the second type noise. (a)
shows the false support-planes fitted by the noise. (b) shows the support-
plane estimated by adjusting.

The approach to deal with the first type of noise is

illustrated in Algorithm 1.
When it comes to the second type of noise shown in

Fig. 3(b), Algorithm 1 fails. Because the support-plane

estimated with this type of noise satisfied the constraints

in Line 17 of Algorithm 1. This case is shown in Fig.

5(a). Because the errors of the noise points are stable, the

distribution patters is well formed. Usually a parallel plane

with a displacement to the ground-truth support-plane can

be estimated by Algorithm 1. The displacement indicates the

error that is determined by the capture device. The error is

given in advance, and is used to adjust the support-plane.
From (11), the estimated support-plane is also written as:

y − t∗1 · x− t∗2 · z − t∗3 = 0. (14)

The ground-truth support-plane is parallel, and is written as:

y − t∗1 · x− t∗2 · z − to3 = 0. (15)

The error ε determines the perpendicular distance of those

two plane:

ε =
|t∗3 − to3|√

1 + (t∗1)2 + (t∗2)2
. (16)

Then the adjusted support-plane is given as:

y = t∗1 · x+ t∗2 · z + t∗3 + ε ·
√

1 + (t∗1)2 + (t∗2)2. (17)
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This procedure is summarized in Algorithm 2.

Algorithm 2 Support-plane adjustment

1: procedure STABILIZATION

2: Support-plane estimated by Algorithm 1
3: procedure ADJUSTMENT

4: ε ← error of data noise
5: Final support-plane estimated by (17)

D. Downsampling and Floor Detection

It is unnecessary and ineffective to utilize the whole point

cloud of a room scene for support-plane fitting, because the

plane only takes a small portion, and most points in the cloud

are outliers. Most points of the acquired data are counted as

outliers, and reasonable downsampling contributes to outlier

reduction and reduces the computation time. The common

methods of image downsampling are evenly sampling on a

grid or random sampling. We adopted the later in our work.

The proposed method is based on the geometrical rela-

tionship of data, so three random points in the support-plane

are enough for the fitting task. This feature also enables

us to employ downsampling to reduce the computational

cost. During the random sampling, prior knowledge can be

employed. For example, in the task of room floor detection,

the floor is more likely to be in the bottom of the depth map,

and we can sample more points at the bottom than at the top.

Two approaches for floor detection are designed based

on random sampling. One is interactive floor detection. A

random image region containing part of the floor is given

manually, and is randomly sampled. With the randomly

sampled points, a support-plane is fitted to detect the floor

by Algorithm 2. Another approach is an automatic floor

detection by human detection, with the assumption that

the floor is underneath the person. The human detector of

Deformable Part Models (DPM) [10] is applied to detect

the person in the RGB image. The detected bounding box

serves the similar role to the manually labeled region in the

first method. Note that we consider both the points lying

exactly in the support plane and the points near the plane

as floor pixels. This treatment is robust to data noise in the

experiments.

III. SPATIAL ORGANIZATION ESTIMATION

The method of support-plane estimation, proposed in

Section II-C, is suitable for floor detection. Floor plays

an important role in room scene segmentation, and is also

widely used as a reference to analyze the object relations.

After detecting the floor, the further semantic understanding

of the room environment can be achieved.

In this section, a traditional method of region growing [11]

is employed for object segmentation. Then those segmented

objects are projected to the floor plane, forming a spatial

organization map.

Fig. 6. 3D point is projected to the floor plane. P is a 3D point, and p is
the projected 2D point on the floor plane.

A. Segmentation

Region growing is a simple region-based method for

image segmentation. This approach examines the features of

neighboring pixels and determines whether the pixel should

be appended to the region. For a color image, the color

feature is usually adopted. By region growing, the whole

image is partitioned into several regions, and the pixels of

each region have similar colors.

We adopt the region growing method on depth image.

By examining the depth of nearby pixels, the image can be

segmented into regions. Each region has pixels of similar

depth values. One factor that may affect the procedure is the

connection between objects and floor. Since most of the room

objects lie on the floor, and the pixels at the joint locations

have similar values, no mater the pixels are from the floor

or from the objects. We remove the floor points and use the

remaining for segmentation by region growing.

Another problem is the selection of seed points. The

general criterion is to select them randomly, but the points

near the view center and those near the camera have priority.

B. Projection

2D map of the objects is effective to demonstrate the

organization (e.g. distance of object to the camera, distance

between an object and another). An example is displayed in

Fig. 1(c). In order to generate a 2D map, the typical method

is to project the 3D objects into a reference plane which is

the floor plane in this work.

The key issue of projection is the coordinate transforma-

tion. The coordinate systems of 3D point cloud are shown

in Fig. 2(b) and Fig. 6. By the coordinate transformation, all

points are mapped to 2D coordinate system xoy. To simplify

the transformation, Z-axis is directly mapped to y-axis, and

Y -axis is omitted, since we pay close attention to horizontal

organization (XOZ) instead of vertical organization. The

details of projection is described in Algorithm 3.

IV. EXPERIMENTAL RESULTS

The experiments were conducted on two datasets to evalu-

ate the proposed method. One is the Cornell Activity Dataset

[9]. There are 60 RGB-D videos, and each video comes with

RGB images, depth image and the skeletons. It involves 12

activities in 5 different scenarios. Another one is our action

dataset. It includes 6 actions that carried out by 3 persons,

and each action has several video instances.
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Algorithm 3 Projection to plane

Require: 3D points (Xi, Yi, Zi)
m
i=1

1: procedure COORDINATE TRANSFORMATION

2: n ← normal of plane
3: xb ← (1, 0, 0)
4: yb ← n
5: zb ← xb × yb
6: xb ← yb × zb
7: xb ← xb/|xb| yb ← yb/|yb| zb ← zb/|zb|
8: procedure CALCULATE 2D COORDINATE

9: for i=1:m do
10: xi ← (Xi, Yi, Zi) · xb

11: yi ← (Xi, Yi, Zi) · zb

A. Experimental Setting and Evaluation Criterion

The Matlab toolbox of SeDuMi [12] is used to solve the

constrained optimization problem in (10). Since there are

few noise points of the first type, the parameters that control

the loop in Algorithm 1 take loose values. Specifically, the

threshold th1 in this algorithm is set to 0.01, and th2 is set

to 0.01. The ε in Algorithm 2 denotes the noise error, and

depends on the distance to the camera. In the experiments,

it is set to 15. The points within the distance of 50 to

the estimated support-plane are considered as floor pixels,

because of the noise in depth image captured from the sensor,

and the noise error becomes larger when the object is far

from the camera. All the distance mentioned in this work is

in millimeter (mm).

To describe the performance of the floor detection, a

definition of overlap between the detected floor and the

ground-truth floor is written as:

o =
area(D ∩G)

area(D ∪G)
, (18)

where D∩G denotes the intersection of the regions covered

by the detected floor and the ground-truth floor, while D ∪
G is the region union. Large detection overlap means high

accuracy.

B. Results of Floor Detection

We compared the proposed method with the RANSAC

method on images of resolution 320× 240. The input points

that are generated from a depth image are over 60,000 (76800

in total), with the invalid points (zero values) being removed.

The average running time was 2.93s for RANSAC and 3.46s

for our method. The results are shown in Fig. 7, and the

proposed method achieves better performance. The estimated

floor by RANSAC method is higher than the ground-truth

due to the outliers.

Then, points were randomly selected from the depth image

to evaluate the performance. The location and number of

points are both random, while the floor prior (floor is at

bottom of image) is applied. The accuracy of detection is

determined by the overlap criteria (18).

(a) (b)

(c) (d)

Fig. 7. Results of floor detection by RANSAC and our method. All the
points from the depth map are used. (a) and (b) are original RGB and depth
image. (c) shows the detected floor by RANSAC, and (d) shows our result.

TABLE I

COMPARISON OF RANSAC AND OUR METHOD.

Random points
Time (s) Overlap

RANSAC Ours RANSAC Ours
512 0.01 0.31 0.6807 0.7084
1391 0.03 0.42 0.0202 0.6981
2537 0.05 0.60 0.6901 0.7402
3392 0.05 0.69 0.0097 0.5624
4168 0.09 0.71 0.0085 0.7159
5879 0.20 1.33 0.6440 0.7228

The computational cost and detection accuracy are shown

in Table I. The numbers of test points were randomly select-

ed. More points demand more running time, but the accuracy

does not necessarily improve because of the outliers. The

proposed method consumes more time than RANSAC, but

is more stable and more accurate than RANSAC.

The proposed method is based on the geometric constrains

of the floor, and is robust to outliers. RANSAC fits the plane

with the least error, and tends to be affected by the room

objects. Fig. 8 shows the results of floor detection. In Fig.

8(a), the plane fitted by RANSAC is along the wall, because

in the sampling there are more points from the wall than

those from the floor. In Fig. 8(c), the estimated plane deviates

from the floor due to the outliers. Fig. 8(b) and Fig. 8(d) show

that our method is free of those problems.

C. Results of Spatial Organization

The whole procedure of the proposed method is shown in

Fig. 9. All the work was done on the depth images (as shown

in Fig. 9(b) and 9(d)), while the RGB images (as shown in

Fig. 9(a) and 9(c)) are only shown for better demonstration.

Based on the detected floor, the region growing method

was employed for segmentation. The seed points were se-

lected randomly from the image center to image border. The

pixels with zeros values are disqualified for the seed. The

results of segmentation are shown in Fig. 9(d).
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(a) (b)

(c) (d)

Fig. 8. Results of floor detection by RANSAC and our method. (a) and
(c) are estimated by RANSAC, while (b) and (d) are fitted by our method.

Fig. 9. Results on Cornell Activity Dataset. (a) shows the original RGB
images, and (b) shows the depth images. The detected floors by support-
plane estimation are painted green in (c). The segmented regions are
demonstrated in different colors in (d). The regions from (d) are projected
to the floor plane, forming the 2D spatial map in (e).

Then the spatial organization map is formed by the pro-

jection process that is presented in Section III-B as shown

in Fig. 9(e). The color points in the map are corresponding

to those in Fig. 9(d). The map can be deemed as the top

view of the indoor scene. The location of the camera is at

the bottom center of the organization map, with coordinate

of (0, 0).

D. Analysis

Limitations. In support-plane estimation, we assumed that

all the objects are on or above the plane, except for some

noise points. This results in an easier convex minimization

problem. In the experiments, the effectiveness of the pro-

posed method is validated. However, this method is only

valid for support-plane. For other planes, such as the plane

with objects both above and below it, the proposed method

is no longer applicable. This may limit the applications of

this method.

Computational cost. The main computational cost of the

presented method is to solve the convex minimization prob-

lem (10). The quantity of the constraints in the optimization

equals the number of the data points. Random sampling

can alleviate the computational cost, but the speed is not

competitive to RANSAC.

V. CONCLUSIONS

In this paper, we present a method for support-plane

estimation. It is based on solving a convex minimization

optimization problem that is derived from the geometric

structure of the input data. The support-plane is suitable

for floor detection. It is robust to outliers and more stable

than RANSAC method. The detected floor with our method

is used as a reference to analyze the spatial relations of

indoor objects. The segmented object points are mapped

into the floor plane, forming a spatial organization map. Our

proposed method achieved remarkable accuracy. However,

the computational cost is high. In the future work, we will

explore efficient approaches to further optimize our method.
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